Solution structure of subunit a, a₁₀₄₋₃₆₃, of the Saccharomyces cerevisiae V-ATPase and the importance of its C-terminus in structure formation.
نویسندگان
چکیده
The 95 kDa subunit a of eukaryotic V-ATPases consists of a C-terminal, ion-translocating part and an N-terminal cytosolic domain. The latter's N-terminal domain (~40 kDa) is described to bind in an acidification-dependent manner with cytohesin-2 (ARNO), giving the V-ATPase the putative function as pH-sensing receptor. Recently, the solution structure of the very N-terminal segment of the cytosolic N-terminal domain has been solved. Here we produced the N-terminal truncated form SCa₁₀₄₋₃₆₃ of the N-terminal domain (SCa₁₋₃₆₃) of the Saccharomyces cerevisiae V-ATPase and determined its low resolution solution structure, derived from SAXS data. SCa₁₀₄₋₃₆₃ shows an extended S-like conformation with a width of about 3.88 nm and a length of 11.4 nm. The structure has been superimposed into the 3D reconstruction of the related A₁A₀ ATP synthase from Pyrococcus furiosus, revealing that the SCa₁₀₄₋₃₆₃ fits well into the density of the collar structure of the enzyme complex. To understand the importance of the C-terminus of the protein SCa₁₋₃₆₃, and to determine the localization of the N- and C-termini in SCa₁₀₄₋₃₆₃, the C-terminal truncated form SCa₁₀₆₋₃₂₄ was produced and analyzed by SAXS. Comparison of the SCa₁₀₄₋₃₆₃ and SCa₁₀₆₋₃₂₄ shapes showed that the additional loop region in SCa₁₀₄₋₃₆₃ consists of the C-terminal residues. Whereas SCa₁₀₄₋₃₆₃ is monomeric in solution, SCa₁₀₆₋₃₂₄ forms a dimer, indicating the importance of the very C-terminus in structure formation. Finally, the solution structure of SCa₁₀₄₋₃₆₃ and SCa₁₀₆₋₃₂₄ will be discussed in terms of the topological arrangement of subunit a and cytoheisn-2 in V-ATPases.
منابع مشابه
Purification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA
Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...
متن کاملSaccharomyces Cerevisiae as a Biocatalyst for Different Carbonyl Group under Green Condition
In this researchsaccharomyces cerevisiae (baker’s yeast) was used as a cheap, readily accessible, selective, efficient, and green bio-catalyst in a chemo selective reduction of carbonyl group to hydroxyl group. In this green procedure three substrates e.g. (3-(3-nitrophenyl)aziridin-2-yl)-1-phenyl-methanone, pyruvate ester, and 2-acetyl-γ-butyrolactone were r...
متن کاملThe Effect of Biosurfactant of Saccharomyces Cerevisiae on Biofilms Produced by Staphylococcus Aureus, Epidermidis and Saprophyticus: A Laboratory Study
Background and Objectives: Biosurfactants are amphiphilic molecules produced by microorganisms that due to surfactant activity, have several applications in different industries such as cleaning, emulsification, foaming and dispersion. The aim of this study was to investigate the effect of biosurfactant extracted from saccharomycess cerevisiae on biofilm formation of staphylococcus aureus (PTC...
متن کاملThe Importance of α-CT and Salt bridges in the Formation of Insulin and its Receptor Complex by Computational Simulation
Insulin hormone is an important part of the endocrine system. It contains two polypeptide chains and plays a pivotal role in regulating carbohydrate metabolism. Insulin receptors (IR) located on cell surface interacts with insulin to control the intake of glucose. Although several studies have tried to clarify the interaction between insulin and its receptor, the mechanism of this interaction r...
متن کاملThe Importance of α-CT and Salt bridges in the Formation of Insulin and its Receptor Complex by Computational Simulation
Insulin hormone is an important part of the endocrine system. It contains two polypeptide chains and plays a pivotal role in regulating carbohydrate metabolism. Insulin receptors (IR) located on cell surface interacts with insulin to control the intake of glucose. Although several studies have tried to clarify the interaction between insulin and its receptor, the mechanism of this interaction r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bioenergetics and biomembranes
دوره 44 3 شماره
صفحات -
تاریخ انتشار 2012